Fourier Transform

1D Continuous Time Fourier Transform

Basis functions (complex sinusoidal or exponential)

ϕ(x,u)=ej2πux,u(,+)\phi(x,u)=e^{j2\pi ux}, u \in (-\infty,+\infty) uu = frequency = # cycles per unit of xx, ω=2πu\omega=2\pi u (radian freq.)

Inverse transform

f(x)=F1{F(u)}=F(u)ej2πuxduf(x)=F^{-1}\{F(u)\}=\int_{-\infty}^\infty F(u)e^{j2\pi ux}\, du

Forward Transform: F(u)=f(x),ϕ(x,u)F(u) =\langle f(x), \phi(x,u) \rangle

F(u)=F{f(x)}=f(x)ej2πexdxF(u)=F\{f(x)\} = \int_{-\infty}^\infty f(x) e^{-j2\pi e x} \, dx Here we use frequency (rather then radian frequency) to define FT. Inverse transform does not need the factor of 1/2π1/2\pi

Representation of FT

#incomplete